Past Issue in 2018

Volume: 8, Issue: 14

left

Dec

20

Dec

5

Nov

20

Nov

5

Oct

20

Oct

5

Sep

20

Sep

5

Sep

12

Aug

20

Aug

5

Jul

20

Jul

5

Jun

20

Jun

5

May

20

May

5

Apr

20

Apr

5

Mar

20

Mar

5

Feb

20

Feb

5

Jan

20

Jan

5

right

Biochemistry

Measuring CD38 Hydrolase and Cyclase Activities: 1,N6-Ethenonicotinamide Adenine Dinucleotide (ε-NAD) and Nicotinamide Guanine Dinucleotide (NGD) Fluorescence-based Methods

Measuring CD38 Hydrolase and Cyclase Activities: 1,N6-Ethenonicotinamide Adenine Dinucleotide (ε-NAD) and Nicotinamide Guanine Dinucleotide (NGD) Fluorescence-based Methods

Guilherme C. de Oliveira Guilherme C. de Oliveira
Karina S. Kanamori Karina S. Kanamori
Maria  Auxiliadora-Martins Maria Auxiliadora-Martins
CC Claudia C. S. Chini
EC Eduardo N. Chini
7507 Views
Jul 20, 2018
CD38 is a multifunctional enzyme involved in calcium signaling and Nicotinamide Adenine Dinucleotide (NAD+) metabolism. Through its major activity, the hydrolysis of NAD+, CD38 helps maintain the appropriate levels of this molecule for all NAD+-dependent metabolic processes to occur. Due to current advances and studies relating NAD+ decline and the development of multiple age-related conditions and diseases, CD38 gained importance in both basic science and clinical settings. The discovery and development of strategies to modulate its function and, possibly, treat diseases and improve health span put CD38 under the spotlights. Therefore, a consistent and reliable method to measure its activity and explore its use in medicine is required. We describe here the methods how our group measures both the hydrolase and cyclase activity of CD38, utilizing a fluorescence-based enzymatic assay performed in a plate reader using 1,N6-Ethenonicotinamide Adenine Dinucleotide (ε-NAD) and Nicotinamide Guanine Dinucleotide (NGD) as substrates, respectively.
Two Different Methods of Quantification of Oxidized Nicotinamide Adenine Dinucleotide (NAD+) and Reduced Nicotinamide Adenine Dinucleotide (NADH) Intracellular Levels: Enzymatic Coupled Cycling Assay and Ultra-performance Liquid Chromatography (UPLC)-Mass Spectrometry

Two Different Methods of Quantification of Oxidized Nicotinamide Adenine Dinucleotide (NAD+) and Reduced Nicotinamide Adenine Dinucleotide (NADH) Intracellular Levels: Enzymatic Coupled Cycling Assay and Ultra-performance Liquid Chromatography (UPLC)-Mass Spectrometry

Karina S. Kanamori Karina S. Kanamori
Guilherme  C.  de Oliveira Guilherme C. de Oliveira
Maria  Auxiliadora-Martins Maria Auxiliadora-Martins
RS Renee A. Schoon
JR Joel M. Reid
EC Eduardo N. Chini
6781 Views
Jul 20, 2018
Current studies on the age-related development of metabolic dysfunction and frailty are each day in more evidence. It is known, as aging progresses, nicotinamide adenine dinucleotide (NAD+) levels decrease in an expected physiological process. Recent studies have shown that a reduction in NAD+ is a key factor for the development of age-associated metabolic decline. Increased NAD+ levels in vivo results in activation of pro-longevity and health span-related factors. Also, it improves several physiological and metabolic parameters of aging, including muscle function, exercise capacity, glucose tolerance, and cardiac function in mouse models of natural and accelerated aging.Given the importance of monitoring cellular NAD+ and NADH levels, it is crucial to have a trustful method to do so. This protocol has the purpose of describing the NAD+ and NADH extraction from tissues and cells in an efficient and widely applicable assay as well as its graphic and quantitative analysis.
In vitro Enzymatic Assays of Histone Decrotonylation on Recombinant Histones

In vitro Enzymatic Assays of Histone Decrotonylation on Recombinant Histones

Rachel  Fellows Rachel Fellows
Patrick   Varga-Weisz Patrick Varga-Weisz
5981 Views
Jul 20, 2018
Class I histone deacetylases (HDACs) are efficient histone decrotonylases, broadening the enzymatic spectrum of these important (epi-)genome regulators and drug targets. Here, we describe an in vitro approach to assaying class I HDACs with different acyl-histone substrates, including crotonylated histones and expand this to examine the effect of inhibitors and estimate kinetic constants.
BMV Propagation, Extraction and Purification Using Chromatographic Methods

BMV Propagation, Extraction and Purification Using Chromatographic Methods

AS Aleksander Strugała
PB Paulina Bierwagen
JR Jakub Dalibor Rybka
MG Michał Giersig
MF Marek Figlerowicz
Anna  Urbanowicz Anna Urbanowicz
5735 Views
Jul 20, 2018
Brome mosaic virus (BMV) is a well-known plant virus representing single-stranded RNA (ssRNA) positive-sense viruses. It has been widely used as a model in multiple studies concerning plant virus biology, epidemiology and the application of viral capsids in nanotechnology. Herein, we describe a method for BMV purification based on ion-exchange and size-exclusion chromatography. The presented method is of similar efficiency to previously described protocols relying on differential centrifugation and can easily be scaled up. The resulting BMV capsids are stable and monodisperse and can be used for further applications.

Cell Biology

Fluorophore-Based Mitochondrial Ca2+ Uptake Assay

Fluorophore-Based Mitochondrial Ca2+ Uptake Assay

CP Charles B. Phillips
6234 Views
Jul 20, 2018
The physiological importance of mitochondrial calcium uptake, observed in processes such as ATP production, intracellular calcium signaling, and apoptosis, makes desirable a simple, straightforward way of investigating this event with unambiguous results. The following protocol uses a calcium-sensitive, membrane-impermeable fluorophore to monitor extra-mitochondrial calcium levels in the presence of permeabilized mammalian cells harboring activated mitochondria.

Developmental Biology

Muscle Function Assessment Using a Drosophila Larvae Crawling Assay

Muscle Function Assessment Using a Drosophila Larvae Crawling Assay

YP Yanina Post
AP Achim Paululat
5941 Views
Jul 20, 2018
Here we describe a simple method to measure larval muscle contraction and locomotion behavior. The method enables the user to acquire data, without the necessity of using expensive equipment (Rotstein et al., 2018). To measure contraction and locomotion behaviour, single larvae are positioned at the center of a humidified Petri dish. Larval movement is recorded over time using the movie function of a consumer digital camera. Subsequently, videos are analyzed using ImageJ (Rueden et al., 2017) for distance measurements and counting of contractions. Data are represented as box or scatter plots using GraphPad Prism (©GraphPad Software).

Immunology

Measurement of TLR4 and CD14 Receptor Endocytosis Using Flow Cytometry

Measurement of TLR4 and CD14 Receptor Endocytosis Using Flow Cytometry

MS Michael S. Schappe
BD Bimal N. Desai
8659 Views
Jul 20, 2018
After recognizing extracellular bacterial lipopolysaccharide (LPS), the toll-like receptor 4 (TLR4)-CD14 signaling complex initiates two distinct signaling pathways–one from the plasma membrane and the other from the signaling endosomes (Kagan et al., 2008). Understanding the early stages of TLR4 signal transduction therefore requires a robust and quantitative method to measure LPS-triggered TLR4 and CD14 receptor endocytosis, one of the earliest events of LPS detection. Here, we describe a flow cytometry-based method that we used recently to study the role of the ion channel TRPM7 in TLR4 endocytosis (Schappe et al., 2018). The assay relies on stimulating the cells with LPS and measuring the cell surface levels of TLR4 (or CD14) at various time points using flow cytometry. Although we detail the method specifically for TLR4 and CD14 from murine bone marrow-derived macrophages, it can be readily adapted to evaluate receptor endocytosis in a variety of other signaling contexts.

Microbiology

Single and Multiplexed Gene Editing in Ustilago maydis Using CRISPR-Cas9

Single and Multiplexed Gene Editing in Ustilago maydis Using CRISPR-Cas9

Mariana Schuster Mariana Schuster
CT Christine Trippel
PH Petra Happel
DL Daniel Lanver
SR Stefanie Reißmann
RK Regine Kahmann
8006 Views
Jul 20, 2018
The smut fungus Ustilago maydis is an established model organism for elucidating how biotrophic pathogens colonize plants and how gene families contribute to virulence. Here we describe a step by step protocol for the generation of CRISPR plasmids for single and multiplexed gene editing in U. maydis. Furthermore, we describe the necessary steps required for generating edited clonal populations, losing the Cas9 containing plasmid, and for selecting the desired clones.

Molecular Biology

α-Synuclein Aggregation Monitored by Thioflavin T Fluorescence Assay

α-Synuclein Aggregation Monitored by Thioflavin T Fluorescence Assay

Michael M. Wördehoff Michael M. Wördehoff
Wolfgang  Hoyer Wolfgang Hoyer
11927 Views
Jul 20, 2018
Studying the aggregation of amyloid proteins like α-synuclein in vitro is a convenient and popular tool to gain kinetic insights into aggregation as well as to study factors (e.g., aggregation inhibitors) that influence it. These aggregation assays typically make use of the fluorescence dye Thioflavin T as a sensitive fluorescence reporter of amyloid fibril formation and are conducted in a plate-reader-based format, permitting the simultaneous screening of multiple samples and conditions. However, aggregation assays are generally prone to poor reproducibility due to the stochastic nature of fibril nucleation and the multiplicity of modulating factors. Here we present a simple and reproducible protocol to study the aggregation of α-synuclein in a plate-reader based assay.

Neuroscience

Evaluating Working Memory on a T-maze in Male Rats

Evaluating Working Memory on a T-maze in Male Rats

AH Ahmed M. Hussein
MB Mekite Bezu
VK Volker Korz
8918 Views
Jul 20, 2018
Working memory is short-term memory, so temporal improvement does not reflect the consolidation of a memory trace, rather the functionality of the underlying neuronal circuits and molecular signaling cascades. The administration of drugs–either one-time or through daily injection–can elucidate the underlying mechanisms. The T-maze is especially suitable for studying dopamine-dependent working memory, since it is less stressful than other tests, for example, water maze-based paradigms (Bezu et al., 2016 and 2017). Here, we present a training protocol for evaluating the underlying mechanisms that lead to the development of spatial working memory in rats. Our approach uses a T-maze, and it can be used to get high temporal resolution.
Ex vivo Whole-cell Recordings in Adult Drosophila Brain

Ex vivo Whole-cell Recordings in Adult Drosophila Brain

Alexa J. Roemmich Alexa J. Roemmich
Soleil S. Schutte Soleil S. Schutte
Diane K. O’Dowd Diane K. O’Dowd
6352 Views
Jul 20, 2018
Cost-effective and efficient, the fruit fly (Drosophila melanogaster) has been used to make many key discoveries in the field of neuroscience and to model a number of neurological disorders. Great strides in understanding have been made using sophisticated molecular genetic tools and behavioral assays. Functional analysis of neural activity was initially limited to the neuromuscular junction (NMJ) and in the central nervous system (CNS) of embryos and larvae. Elucidating the cellular mechanisms underlying neurological processes and disorders in the mature nervous system have been more challenging due to difficulty in recording from neurons in adult brains. To this aim we developed an ex vivo preparation in which a whole brain is isolated from the head capsule of an adult fly and placed in a recording chamber. With this preparation, whole cell recording of identified neurons in the adult brain can be combined with genetic, pharmacological and environmental manipulations to explore cellular mechanisms of neuronal function and dysfunction. It also serves as an important platform for evaluating the mechanism of action of new therapies identified through behavioral assays for treating neurological diseases. Here we present our protocol for ex vivo preparations and whole-cell recordings in the adult Drosophila brain.
Assessing Experience-dependent Tuning of Song Preference in Fruit Flies (Drosophila melanogaster)

Assessing Experience-dependent Tuning of Song Preference in Fruit Flies (Drosophila melanogaster)

XL Xiaodong Li
HI Hiroshi Ishimoto
AK Azusa Kamikouchi
6019 Views
Jul 20, 2018
In songbirds and higher mammals, early auditory experience during childhood is critical to detect and discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. Here, we describe a new behavioral paradigm with Drosophila melanogaster to investigate how the auditory experience shapes sound perception. This behavioral paradigm consists of two parts: training session and test session. In the training session, we keep the flies singly in a training capsule and expose them to training sound for 6 days after eclosion. After the training session, flies are subjected to the test session, in which the mating behaviors of flies are monitored upon sound playback. As the training and test sounds, we use two types of artificial sound, which correspond to the pattern of conspecific and heterospecific courtship songs of fruit flies. By applying this method, we can measure how the acoustic experience with the conspecific song as a young adult sharpens the song preference and mate selection as a breeding adult in the fruit fly.
Embryonic Intravitreous Injection in Mouse

Embryonic Intravitreous Injection in Mouse

LC Liyuan Cui
YD Yupu Diao
JZ Jiayi Zhang
4614 Views
Jul 20, 2018
Axons of retinal ganglion cells (RGCs) relay visual information from the retina to lateral geniculate nucleus (LGN) and superior colliculus (SC), which are two major image-forming visual nuclei. Wiring of these retinal projections completes before vision begins. However, there are few studies on retinal axons at embryonic stage due to technical difficulty. We developed a method of embryonic intravitreous injection of dyes in mice to visualize retinal projections to LGN and SC. This study opens up the possibility of understanding early visual circuit wiring in mice embryos.

Plant Science

High Resolution Melting Temperature Analysis to Identify CRISPR/Cas9 Mutants from Arabidopsis

High Resolution Melting Temperature Analysis to Identify CRISPR/Cas9 Mutants from Arabidopsis

CD Cynthia Denbow
SE Sonia Carole Ehivet
SO Sakiko Okumoto
7847 Views
Jul 20, 2018
CRISPR/Cas9 made targeted mutagenesis and genome editing possible for many plant species. One of the ways that the endonuclease is used for plant genetics is the creation of loss-of-function mutants, which typically result from erroneous DNA repair through non-homologous end joining (NHEJ) pathway. The majority of erroneous repair events results in single-bp insertion or deletion. While single-bp insertions or deletions (indels) effectively destroy the function of protein-coding genes through frameshift, detection is difficult due to the small size shift. High-resolution melting temperature analysis allows quick detection, and it does not require any additional pipetting steps after the PCR amplification of the region of interest. In this protocol, we will describe the steps required for the analysis of potential homozygous mutants.
Extraction of RNA from Recalcitrant Tree Species Paulownia elongata

Extraction of RNA from Recalcitrant Tree Species Paulownia elongata

NR Niveditha Ramadoss
Chhandak Basu Chhandak Basu
5890 Views
Jul 20, 2018
Isolation of pure RNA is the basic requisite for most molecular biology work. Plants contain polyphenols and polysaccharides, which can interfere with isolation of pure RNA from them. Especially hardwood tree species like Paulownia elongata have surplus amount of RNA-binding alkaloids, proteins and secondary metabolites that can further complicate the process of RNA extraction. Paulownia elongata is a fast-growing tree species which is known for its role in environmental adaptability and biofuel research. Here we describe an economical, efficient and time-saving method (2 h) to extract RNA from leaf tissues of the tree Paulownia elongata. Lack of DNA contamination and good RNA integrity were confirmed using RNA Gel electrophoresis. The purity of RNA was confirmed using Nanodrop spectrophotometer that revealed an A260:A280 ratio of about 2.0. The purified RNA was successfully used in the downstream applications such as RT-PCR (Reverse Transcription PCR) and qPCR (quantitative PCR). This method could be used for RNA extraction from several other recalcitrant tree species.