Past Issue in 2022

Volume: 12, Issue: 9

left

Jul

20

Jul

5

Jun

20

Jun

5

May

20

May

5

Apr

20

Apr

5

Mar

20

Mar

5

Feb

20

Feb

5

Jan

20

Jan

5

Jul

5

Aug

5

Aug

20

right

Biochemistry

Expression, Purification, and in vitro Enzyme Activity Assay of a Recombinant Aldehyde Dehydrogenase from Thermus thermophilus, using an Escherichia coli host

Expression, Purification, and in vitro Enzyme Activity Assay of a Recombinant Aldehyde Dehydrogenase from Thermus thermophilus, using an Escherichia coli host

KS Kim Shortall
EM Edmond Magner
TS Tewfik Soulimane
1786 Views
May 5, 2022
Based on previous in-depth characterisation, aldehyde dehydrogenases (ALDH) are a diverse superfamily of enzymes, in terms of both structure and function, present in all kingdoms of life. They catalyse the oxidation of an aldehyde to carboxylic acid using the cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)+), and are often not substrate-specific, but rather have a broad range of associated biological functions, including detoxification and biosynthesis. We studied the structure of ALDHTt from Thermus thermophilus, as well as performed its biochemical characterisation. This allowed for insight into its potential substrates and biological roles.In this protocol, we describe ALDHTt heterologous expression in E. coli, purification, and activity assay (based on Shortall et al., 2021). ALDHTt was first copurified as a contaminant during caa3-type cytochrome oxidase isolation from T. thermophilus. This recombinant production system was employed for structural and biochemical analysis of wild-type and mutants, and proved efficient, yielding approximately 15–20 mg/L ALDHTt. For purification of the thermophilic his-tagged ALDHTt, heat treatment, immobilized metal affinity chromatography (IMAC), and gel filtration chromatography were used. The enzyme activity assay was performed via UV-Vis spectrophotometry, monitoring the production of reduced nicotinamide adenine dinucleotide (NADH).Graphical abstract: Flow chart outlining the steps in ALDHTt expression and purification, highlighting the approximate time required for each step.
Immunoisolation of Endosomal Recycling Vesicles from Saccharomyces cerevisiae

Immunoisolation of Endosomal Recycling Vesicles from Saccharomyces cerevisiae

SS Sho W. Suzuki
SE Scott D. Emr
1554 Views
May 5, 2022
Endosomal recycling is essential for the appropriate function of the endosome. During this process, endosomal coat complexes (i.e., retromer, and Mvp1) are recruited to the endosome, and deform its membrane to form recycling vesicles. To further analyze this, we developed a protocol for the immunoisolation of recycling vesicles from budding yeast. This method is a powerful way to characterize endosomal recycling pathways.

Biophysics

Production and Crystallization of Nanobodies in Complex with the Receptor Binding Domain of the SARS-CoV-2 Spike Protein

Production and Crystallization of Nanobodies in Complex with the Receptor Binding Domain of the SARS-CoV-2 Spike Protein

AL Audrey Le Bas
HM Halina Mikolajek
JH Jiandong Huo
CN Chelsea Norman
JD Joshua Dormon
JN James H. Naismith
RO Raymond J. Owens
1944 Views
May 5, 2022
The receptor binding domain (RBD) of the spike protein of SARS-CoV-2 binds angiotensin converting enzyme-2 (ACE-2) on the surface of epithelial cells, leading to fusion, and entry of the virus into the cell. This interaction can be blocked by the binding of llama-derived nanobodies (VHHs) to the RBD, leading to virus neutralisation. Structural analysis of VHH-RBD complexes by X-ray crystallography enables VHH epitopes to be precisely mapped, and the effect of variant mutations to be interpreted and predicted. Key to this is a protocol for the reproducible production and crystallization of the VHH-RBD complexes. Based on our experience, we describe a workflow for expressing and purifying the proteins, and the screening conditions for generating diffraction quality crystals of VHH-RBD complexes. Production and crystallization of protein complexes takes approximately twelve days, from construction of vectors to harvesting and freezing crystals for data collection.

Cell Biology

Quantitative Analysis of Actin Cable Length in Yeast

Quantitative Analysis of Actin Cable Length in Yeast

SM Shane G. McInally
JK Jane Kondev
BG Bruce L. Goode
1793 Views
May 5, 2022
Polarized actin cables in S. cerevisiae are linear bundles of crosslinked actin filaments that are assembled by two formins, Bnr1 (localized to the bud neck), and Bni1 (localized to the bud tip). Actin is polymerized at these two sites, which results in cables extending along the cell cortex toward the back of the mother cell. These cables serve as polarized tracks for myosin-based transport of secretory vesicles and other cargo, from the mother cell to the growing daughter cell. Until recently, descriptions of actin cable morphology and architecture have largely been qualitative or descriptive in nature. Here, we introduce a new quantitative method that enables more precise characterization of actin cable length. This technological advance generates quantitative datasets that can be used to determine the contributions of different actin regulatory proteins to the maintenance of cable architecture, and to assess how different pharmacological agents affect cable arrays. Additionally, these datasets can be used to test theoretical models, and be compared to results from computational simulations of actin assembly.Graphical abstract: Illustration of actin cable length and morphology analysis. (A) Representative maximum intensity projection image of S. cerevisiae fixed and stained with fluorescently-conjugated phalloidin to label F-actin (displayed in color), and fluorescently-conjugated Concanavalin A to label the cell wall (displayed in grey scale). Lengths of actin cables traced from the bud neck to their ends are indicated (dashed lines). (B) Inverted grey scale image of F-actin labelled with fluorescently-conjugated phalloidin and the cell wall traced in black. The length (purple) and end-to-end distance (green) of a single actin cable is indicated. Scale bar, 2 µm. (C–E) Actin cable length (C), end-to-end distance (D), and tortuosity (E) from hypothetical datasets, where each data point represents an individual cable and larger symbols represent the mean from each hypothetical experiment. Error bars, 95% confidence intervals.

Computational Biology and Bioinformatics

A System to Easily Manage Metadata in Biomedical Research Labs Based on Open-source Software

A System to Easily Manage Metadata in Biomedical Research Labs Based on Open-source Software

MC Manuel A. Castro-Alamancos
1176 Views
May 5, 2022
In most biomedical labs, researchers gather metadata (i.e., all details about the experimental data) in paper notebooks, spreadsheets, or, sometimes, electronic notebooks. When data analyses occur, the related details usually go into other notebooks or spreadsheets, and more metadata are available. The whole thing rapidly becomes very complex and disjointed, and keeping track of all these things can be daunting. Organizing all the relevant data and related metadata for analysis, publication, sharing, or deposit into archives can be time-consuming, difficult, and prone to errors. By having metadata in a centralized system that contains all details from the start, the process is greatly simplified. While lab management software is available, it can be costly and inflexible. The system described here is based on a popular, freely available, and open-source wiki platform. It provides a simple but powerful way for biomedical research labs to set up a metadata management system linking the whole research process. The system enhances efficiency, transparency, reliability, and rigor, which are key factors to improving reproducibility. The flexibility afforded by the system simplifies implementation of specialized lab requirements and future needs. The protocol presented here describes how to create the system from scratch, how to use it for gathering basic metadata, and provides a fully functional version for perusal by the reader.Graphical abstract: Lab Metadata Management System.

Microbiology

Bacterial Growth Curve Measurements with a Multimode Microplate Reader

Bacterial Growth Curve Measurements with a Multimode Microplate Reader

AR Ariel T. Rogers
KB Kaitlin R. Bullard
AD Akash C. Dod
YW Yong Wang
4373 Views
May 5, 2022
Bacterial studies based on growth curves are common in microbiology and related fields. Compared to the standard photometer and cuvette based protocols, bacterial growth curve measurements with microplate readers provide better temporal resolution, higher efficiency, and are less laborious, while analysis and interpretation of the microplate-based measurements are less straightforward. Recently, we developed a new analysis method for evaluating bacterial growth with microplate readers based on time derivatives. Here, we describe a detailed protocol for this development and provide the homemade program for the new analysis method.
Ex vivo Human Skin Infection with Herpes Simplex Virus 1

Ex vivo Human Skin Infection with Herpes Simplex Virus 1

ND Nydia C. De La Cruz
MM Maureen Möckel
LW Lisa Wirtz
DK Dagmar Knebel-Mörsdorf
1191 Views
May 5, 2022
Although herpes simplex virus 1 (HSV-1) is a well-studied virus, how the virus invades its human host via skin and mucosa to reach its receptors and initiate infection remains an open question. For studies of HSV-1 infection in skin, mice have been used as animal models. Murine skin infection can be induced after injection or scratching of the skin, which provides insights into disease pathogenesis but is clearly distinct from the natural entry route in human tissue. To explore the invasion route of HSV-1 on the tissue level, we established an ex vivo infection assay using skin explants. Here, we detail a protocol allowing the investigation of how the virus overcomes mechanical barriers in human skin to penetrate in keratinocytes and dermal fibroblasts. The protocol includes the preparation of total skin samples, skin shaves, and of separated epidermis and dermis, which is followed by incubation in virus suspension. The ex vivo infection assay allows the visualization, quantification, and characterization of single infected cells in the epidermis and dermis prior to viral replication and the virus-induced tissue damage. Hence, this experimental approach enables the identification of primary viral entry portals.Graphical abstract:

Neuroscience

Translating Ribosome Affinity Purification (TRAP) of Cell Type-specific mRNA from Mouse Brain Lysates

Translating Ribosome Affinity Purification (TRAP) of Cell Type-specific mRNA from Mouse Brain Lysates

CS Catherine L. Salussolia
KW Kellen D. Winden
MS Mustafa Sahin
2569 Views
May 5, 2022
Mammalian tissues are highly heterogenous and complex, posing a challenge in understanding the molecular mechanisms regulating protein expression within various tissues. Recent studies have shown that translation at the level of the ribosome is highly regulated, and can vary independently of gene expression observed at a transcriptome level, as well as between cell populations, contributing to the diversity of mammalian tissues. Earlier methods that analyzed gene expression at the level of translation, such as polysomal- or ribosomal-profiling, required large amounts of starting material to isolate enough RNA for analysis by microarray or RNA-sequencing. Thus, rare or less abundant cell types within tissues were not able to be properly studied with these methods. Translating ribosome affinity purification (TRAP) utilizes the incorporation of an eGFP-affinity tag on the large ribosome subunit, driven by expression of cell-type specific Cre-lox promoters, to allow for identification and capture of transcripts from actively translating ribosomes in a cell-specific manner. As a result, TRAP offers a unique opportunity to evaluate the entire mRNA translation profile within a specific cell type, and increase our understanding regarding the cellular complexity of mammalian tissues.Graphical abstract: Schematic demonstrating TRAP protocol for identifying ribosome-bound transcripts specifically within cerebellar Purkinje cells.

Plant Science

Quantification of Soil-surface Roots in Seedlings and Mature Rice Plants

Quantification of Soil-surface Roots in Seedlings and Mature Rice Plants

EH Eiko Hanzawa
YK Yuka Kitomi
YU Yusaku Uga
TS Tadashi Sato
1843 Views
May 5, 2022
Soil-surface roots (SORs) in rice are primary roots that elongate over or near the soil surface. SORs help avoid excessive reduction of stress that occurs in paddy, such as in saline conditions. SORs may also be beneficial for rice growth in phosphorus-deficient paddy fields. Thus, SOR is a useful trait for crop adaptation to certain environmental stresses. To identify a promising genetic material showing SOR, we established methods for evaluating SOR under different growth conditions. We introduced procedures to evaluate the genetic diversity of SOR in various growth stages and conditions: the Cup method allowed us to quantify SOR at the seedling stage, and the Basket method, using a basket buried in a pot or field, is useful in quantifying SOR at the adult stage. These protocols are expected to contribute not only to the evaluation of the genetic diversity of SOR, but also the isolation of related genes in rice.

Systems Biology

A Molecular Cloning and Sanger Sequencing-based Protocol for Detecting Site-specific DNA Methylation

A Molecular Cloning and Sanger Sequencing-based Protocol for Detecting Site-specific DNA Methylation

WG Wei Guo
AC Anthony Cannon
DL Damon Lisch
1859 Views
May 5, 2022
DNA methylation is a conserved chemical modification, by which methyl groups are added to the cytosine of DNA molecules. Methylation can influence gene expression without changing the sequence of a particular gene. This epigenetic effect is an intriguing phenomenon that has puzzled biologists for years. By probing the temporal and spatial patterns of DNA methylation in genomes, it is possible to learn about the biological role of cytosine methylation, as well as its involvement in gene regulation and transposon silencing. Advances in whole-genome sequencing have led to the widespread adoption of methods that examine genome-wide patterns of DNA methylation. Achieving sufficient sequencing depth in these types of experiments is costly, particularly for pilot studies in organisms with large genome sizes, or incomplete reference genomes. To overcome this issue, assays to determine site-specific DNA methylation can be used. Although often used, these assays are rarely described in detail. Here, we describe a pipeline that applies traditional TA cloning, Sanger sequencing, and online tools to examine DNA methylation. We provide an example of how to use this protocol to examine the pattern of DNA methylation at a specific transposable element in maize.